Examples
Social Network Analysis
Visualize relationships in a social network:
import deepvisual as dv
import pandas as pd
# Sample social network data
df = pd.DataFrame({
'from': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob'],
'to': ['Bob', 'Charlie', 'Alice', 'Charlie', 'Alice'],
'relation': ['friends', 'colleagues', 'family', 'colleagues', 'friends']
})
# Create a triplet graph visualization
dv.visualize_triplet_graph(
df,
edge_color="blue",
node_color="lightblue",
node_text_color="black",
background_color="white"
)
Project Dependencies
Show dependencies between different components of a project:
import deepvisual as dv
import pandas as pd
# Sample project dependencies
df = pd.DataFrame({
'from': ['Frontend', 'Backend', 'Database', 'API'],
'to': ['Backend', 'Database', 'API', 'Frontend']
})
# Create a doublet link visualization
dv.visualize_link_doublet(
df,
edge_color="green",
node_text_color="black",
background_color="white"
)
Workflow Visualization
Visualize a complex workflow with self-referential steps:
import deepvisual as dv
import pandas as pd
import deepcore as dc
# Sample workflow data
df = pd.DataFrame({
'from': ['Start', 'Process', 'Review', 'Process', 'End'],
'to': ['Process', 'Review', 'Process', 'End', 'Start']
})
# Let's sort using the deepcore library
dc.sort_duoblet(df)
# Create a doublet link visualization
dv.visualize_link_doublet(
df,
loop_color='red',
edge_color='black',
inter_edge_color='blue',
title='Workflow Process'
)
Custom Styling Example
Create a highly customized visualization:
import deepvisual as dv
import pandas as pd
# Sample data
df = pd.DataFrame({
'from': ['A', 'B', 'C', 'D'],
'to': ['B', 'C', 'D', 'A']
})
# Create a customized visualization
dv.visualize_doblet_graph(
df,
edge_color="purple",
node_text_color="white",
background_color="darkgray",
figsize=(12, 10),
curvature=0.3,
arrow_style="->,head_length=0.8,head_width=0.6",
connection_style="arc3,rad=0.2"
)
Interactive Visualization
Create an interactive visualization with Jupyter:
import deepvisual as dv
import pandas as pd
import matplotlib.pyplot as plt
# Sample data
df = pd.DataFrame({
'from': ['Input', 'Process', 'Output'],
'to': ['Process', 'Output', 'Input']
})
# Create the visualization
fig = dv.visualize_link_doublet(
df,
loop_color='orange',
edge_color='blue',
inter_edge_color='green',
title='Interactive Process'
)
# Add interactivity
plt.ion() # Turn on interactive mode
plt.show()
# The plot will remain interactive in Jupyter
Best Practices for Examples
-
Data Preparation:
- Use meaningful labels
- Structure data appropriately
- Clean and validate data
-
Visualization:
- Choose appropriate colors
- Use consistent styling
- Consider the audience
-
Documentation:
- Add clear comments
- Explain the context
- Show expected output